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Abstract— Considering the widespread use of mobile robots
in different parts of society, it is important to provide them with
the capability to behave in a socially acceptable manner. There-
fore, a research topic of great importance recently has been the
study of Human-Robot Interaction. Autonomous navigation is
a fundamental task in Robotics, and several different strategies
that produce paths that are either length or time optimized
can be found in the literature. However, considering the recent
use of mobile robots in a more social context, the use of such
classical techniques is restricted. Therefore, in this article we
present a social navigation approach considering environments
with groups of people. The proposal uses a density function to
efficiently represent groups of people, and modify the navigation
architecture in order to include the social behaviour of the robot
during its motion. This architecture is based on the combined
use of the Probabilistic Road Mapping (PRM) and the Rapidly-
exploring Random Tree (RRT) path planners and an adaptation
of the elastic band algorithm. Experimental evaluation was
carried out in different simulated environments, providing
insight on the performance of the proposed technique, which
surpasses classical techniques with no proxemics awareness in
terms of social impact.

I. INTRODUCTION

It is expected that the use of mobile robots in different
parts of society will be commonplace in the near future.
This change from controlled environments (e.g., factories)
to unconstrained environments where people are constantly
present (e.g., homes, public places, working environments)
will require robots to behave in socially acceptable ways.

Therefore, a research topic of great importance recently
has been the study of Human-Robot Interaction (HRI). This
area is responsible for studying the different aspects inherent
to the interactions between humans and robots, allowing
the development of techniques that let the use of these as
transparent as possible.

The interaction between humans and robots can be divided
into two basic situations, namely (i) the case where the
robot must perform a task whilst reducing the possible social
impact, and (ii) the case where the task involves interacting
directly with a person. Either way, there are some nonverbal
social rules implied that must be respected, especially those
related to personal space of individuals, rules which are
studied in proxemics [1].
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Fig. 1: The robot has to choose the best route and navigate
from the kitchen to the living-room by using its social rules.

In the last years, the term social navigation in robotics has
been introduced as a way to relate the robot navigation in so-
cial contexts and human-robot interaction. New generations
of social robots should be able to generate different socially
accepted routes during an interaction with humans and also
exhibit proactive social behaviours during the navigation [2]
(e.g., to gracefully approach people, or to wittily enter and
exit from a conversation). Figure 1 illustrates the problem to
solve: the robot located in the kitchen has to choose the best
route and navigate from its current pose to the living-room
(target) along a complex environment with people.

This need for socially acceptable behaviour crosses many
domains and calls for inquiries (e.g., can I make noise now?
How fast can I move without disturbing people’s sense of
safety? Can I navigate in front of someone? Can I move
behind her?), the answers to which act as constraints on the
paths, turning them anthropomorphic paths [3].

In [4], a proposal for a social path planner is described,
which includes a model of social navigation. In this work
it is presented a new mathematical model built upon the
use of a density function in order to efficiently analyse
the environment and cluster the individuals into groups
according to their distances to other individuals. Next, the
system adapts the navigation architecture for including re-
gions where navigation is either discouraged or forbidden,
considering the previously defined clusters. Finally, this
paper validates the presented methodology with experiments
on different simulated scenarios considering situations which
are representative of common problems that might arise
when navigating on human-populated environments.



The remainder of this paper is organized as follows: in
Section II a review of the literature is presented. Our method-
ology is presented in detail in Section III and validated by
a group of experiments on a simulated environment, the
results of which are shown in Section IV. Finally, Section V
concludes with a discussion of the results and future research
directions.

II. RELATED WORK

Generally, classical motion planning methods dealing with
an autonomous navigation consider all obstacles in the
environment the same way, including people. However, this
approach may not be the best solution, since it is important to
consider people as a special entity, for example considering
the person’s level of comfort with respect to the path of the
robot.

Social navigation started being extensively studied in the
last years and several methods have been proposed from then.
Works like [5], [6], [7] have shown that the same proxemic
zones that exists in human-human interaction can also be
applied to human-robot interaction scenarios. Therefore, an
increasing number of works have incorporated this notion of
personal space model in the path planning step in order to
create acceptable behaviours for robots during their naviga-
tion.

A path that explicitly takes into account the human pres-
ence in the environment must address situations such as not
passing between two people talking or avoid getting out
of the field of view of the people, with the possibility of
scaring them unnecessarily. Many works can be found in
the literature with different approaches to this problem [8],
[9], [10], [11]. However, this model is not permanent, and
can vary accordingly to different aspects, such as previously
experience with the robot [12], or functional noise of the
robot [13].

In most real-world scenarios, humans in the environment
are interacting with each other. In this case, during their
deliberation phase, motion planners must take into account
this new combined entity, instead of single individuals. The
problem of identifying and correctly represent groups of
people in the environment is a challenge in itself. Most works
dealing with groups of people are build upon the F-formation
system [14] formalization, which states that people often
group themselves in some spatial formation with a shared
space between them. Fig. 2 illustrates some of the Kendon’s
F-formation arrangements.

(a) (b) (c)

Fig. 2: Kendon’s F-formation arrangements. (a) Vis-a-vis ar-
rangement; (b) L-arrangement; (b) side-by-side arrangement.

In [15] it is presented an unified theoretical formalization
for different classes of subproblems related to social path

planning. Next, considering an extension of the classical
F-formation system for more then two individuals, it is
proposed a technique to solve problems such as human-aware
navigation and how to engage groups of people. In [16] it
is proposed a framework that can model context-dependent
human spatial interactions, encoded in the form of a social
map. The social map is obtained by solving a learning prob-
lem using Kernel Principal Component Analysis (KPCA),
and later the social borders are calculated as isocontours of
the learned implicit function.

A broad survey and discussion regarding the social con-
cepts of proxemics theory applied in the context of human-
aware autonomous navigation is presented in [17].

This paper proposes a mathematical model based upon the
use of a modified two-dimensional Gaussian function [2] to
model the personal space of an individual and the use of
a density function [18] in order to efficiently analyse the
environment and cluster the individuals into groups accord-
ing to their distances to other individuals. Next, this model
is incorporated on the navigation architecture presented in
[19], allowing the robot to navigate in a more social manner
among humans.

III. METHODOLOGY

The methodology is divided into two fundamental steps:
(i) individuals clustering, and (ii) socially acceptable naviga-
tion. In the first step, based upon the use of a Gaussian-
based representation for personal space, a global density
function to separate individuals into groups accordingly to
their distances to each other is defined. Next, the social
navigation architecture uses the well-known PRM [20] and
RRT [21] planners, in conjunction with a modified version
of the elastic band algorithm for path optimization [19]. An
overview of the proposed approach is described in the Figure
3. The rest of the section describes with details the proposed
method.

Fig. 3: Overview of the social navigation framework.



A. Personal Space

Let S ∈ R2 be the space of the Global Map. An individual
i is represented by its position qi = [xi yi]

T in S and it
orientation θi ∈ [0, 2π]. The personal space is modelled by
a asymmetric 2-dimensional Gaussian function [2], which
associates the distance between a point p = [x y]T ∈ S
and the person’s position with a real value gi ∈ [0, 1]. The
expression for the Gaussian function is

gi(x, y) = exp(−(a(x−xi)
2+b(x−xi)(y−yi)+c(y−yi)

2)), (1)

where the coefficients a, b and c are used to take into account
the orientation θi, and are defined by the relations
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where σs is the variance to the sides (θi±π/2 direction) and
σ represents the variance along the θi direction (σh) or the
variance to the rear (σr) [2]. Figure 4 illustrates the personal
space model.

Fig. 4: Contour map personal space of a single individual
as modelled by Equation (1). The person is posed at q =
[0 0 3π/4]T .

The decision to use Gaussian functions to modelling
personal spaces is very useful, since it allows for many
established techniques to be used in this context. In our case,
it will be used as the input of a global density function that
clusters the individuals, as the next section explains.

B. Individuals Clustering

When considering groups of humans, it is needed to
define how to associate the various personal spaces of each
individual. In this paper, this association is accomplished by
performing a Gaussian Mixture. We sum the personal space
function gi(p) for each individual i in the set of all P of
all people in S and arrive at a Global Space function G(p).
The proposal defines the Global Space Function:

G(x, y) =
∑
i∈P

gi(x, y). (2)

Having performed the association and calculated the value
of G(p), the next step is to separate the individuals in groups.
The method described in this paper discriminate the group
contour to which each individual belongs, so it can define
regions of forbidden navigation. This is accomplished by
using the method described in [18].

This method was originally employed for grouping points
in a point cloud to categorize them as to whether they belong
to the same object. In essence, this method takes advantage
of the property that, if for each point in a point cloud we
associate a Gaussian function centered around it, then the
closer two or more points are, the larger the sum of their
respective Gaussian will be. This same line of reasoning can
be used to group people into clusters which a robot can use
to reason about space.

The method chooses the Ω parameter as the smallest
euclidean distance between two people pi,pj ∈ P such that
those two are neighbours. This value is given by the insights
of proxemics. If pi,pj are neighbours, then ‖pi,pj‖ ≤ Ω,
and the density contribution δ between them is

δ = gi(pj). (3)

Since gi(qi) = 1 for each qi ∈ P , then if qi has k
neighbours then G(qi) ≥ 1+kδ. Therefore, in order to group
individuals who have at least k neighbours, the method can
adjust a density threshold h given by

h = 1 + kδ, (4)

and it can compare the value of the Global Function for each
point in S and determine whether that point belongs to the
personal space of a group of individuals. The set of such
points is denoted by J and given by the expression

J = {p ∈ S | G(p) ≥ h}. (5)

By manipulating the value of h either by setting it directly
or by manipulating the value of δ, it is able to control how
near or far the border of J is in relation to each human
in the cluster. In the method described in this paper we
have experimentally fixed h = 1, so that the border of the
forbidden region is not immediately adjacent to an individual.
Figure 5b shows the result of applying this procedure to
the group shown in Figure 5a. In the Figure Figure 5a, two
regions of forbidden navigation have been calculated by the
algorithm.

Finally, the contours of these forbidden regions are defined
by a set of k polygonal chain (i.e., polyline) Lk = {l1, ..., lk},
where k is the number of regions detected by the algorithm.
The curve li is described as li= {a1, ..., am}, being ai =
(x, y)i the vertices of the curve, which are located in the
contour of the region J . The number of vertices, m, is
dynamically adjusted by the algorithm, being the Euclidean
distance between two consecutive vertices, d(ai, aj), less
than 10 cm. An example of two polylines generated by the
algorithm, l1 and l2, for the Figure 5a are drawn in Figure 5b.



(a) (b)

Fig. 5: (a) shows a group of three people in points
q1 = [2.48m, 1.67m]T ,q2 = [1.28m, 1.28m]T ,q3 =
[1.88m, 1.88m]T , with orientations θ1 = 225◦, θ2 = 0◦,
θ3 = 290◦ respectively, and a group of two people at
q4 = [−1.22m,−2.12m]T ,q5 = [−2.12m,−2.12m]T with
orientations θ4 = 135◦ and θ5 = 45◦. (b) shows the result
of applying the clustering algorithm to these groups with
h = 1.0. Regions of forbidden navigation are shown in red.

C. Socially Acceptable Navigation

An overview of the social navigation architecture de-
scribed in this paper was illustrated in the Figure 3. Once
the polygonal curves associated to group humans have been
calculated, Lk, the proposed approach integrates this infor-
mation in the path planners. First, the global planner traces
a navigation plan for a given target T ∈ S. Then, the local
planner modifies the plan according to the obstacles and
humans detected by the robot. In the proposed approach,
the social navigation architecture is a modified version of
the one presented in [19], which consists of the next stages:

1) PRM-RRT path planners: First, the PRM planner [20]
uses a learnt graph of the free space to search for a path
free of obstacles from the robot location to the target. The
initial graph is created using a generalized inverse kinematics
algorithm, based on the Levenberg-Marquardt method [22].
In case that the graph still had more that one connected
region or there was not a direct line of sight from the robot
(or the target) to the graph, the RRT planner [21] is used.
Thus, the final graph that describes the free space is defined
by a set of nodes, N , and edges, E, Gt = (N,E). In Fig. 6,
a descriptive example of this graph is drawn as a set of nodes
(red circles) and arcs (red lines). Next, the path is created by
first searching the closest point in the graph to the current
robot’s pose, the closest point in Gt to the target position T
and a path through the graph linking both points.

2) Elastic Band Path Optimization: The initial path is first
transformed into a regularly separated series of way-points,
or steps, at a distant closer than the length of the robot. The
elastic band path optimization [19] updates the path planned
for each step as it is traversed, adapting it to unexpected
events, such as obstacles or group of humans described by
the list of polylines Lk. As illustrated in Figure 6, the path
is analysed under the laser range, and two virtual forces are
created. Let’s define the path P = pi ∈ R2 as an ordered set of
(x, y) locations – called steps – of the robot’s configuration

Fig. 6: The final social path is shown as the blue continuous
line (4). Besides, the graph Gt provided by path planners
(red colour), and the set of forces are drawn.

space. Then, an internal contraction virtual force is defined
to model the tension in a physical elastic band using the
following equation:

fc = kc ·
(

pi−1 − pi
‖pi−1 − pi‖

+
pi+1 − p
‖pi+1 − pi‖

)
, (6)

where pi is the position of step i in the path. The physical
interpretation is a series of springs connecting the path steps,
with kc as a global contraction gain. These contraction forces
are illustrated in green colour in Figure 6.

Also, a repulsive force pushes each step away from the
obstacles and humans defined by Lk to increase the clearance
of the robot. A function d(p) is defined R2 × R2 →
{R+ ∪ 0} that computes the minimum distance of a step
p to the nearest obstacle, as perceived by the laser sensor.

fr =

{
kr(do − d)∂d

∂p p < po
0 p ≥ po

}
, (7)

where kr is a global repulsion gain and do is the maximum
distance up to which the force is applied. These repulsion
forces are illustrated in blue colour in Figure 6. The Jacobian
∂d
∂p is approximated using finite differences. The final force
is calculated as a linear combination of both, f = fc + fr,
that is continuously applied to each step inside the laser field.
This force modify the final path, as is shown in the Figure 6.

IV. EXPERIMENTS

To evaluate the performance of the proposed algorithm,
a set of simulated scenarios were used. The algorithms
have been developed in C++ software and the benchmark
tests have been performed on a PC with processor Intel
Core i5 2.4GHz with 4Gb of DDR3 RAM and GNU-Linux
Ubuntu 16.10. In order to assess the effectiveness of the
proposed approach, the methodology has been evaluated
accordingly to the following metrics: (i) minimum distance
to a human during navigation; (ii) distance travelled; and (iii)
navigation time. A comparative study of the proposal with
the navigation architecture presented in [19] is also provided.



Two different simulated scenarios have been created. The
first one consists of a square environment without objects,
with dimensions 8 m×8 m, and the presence of 6 individuals.
These individuals are grouped as is shown in the Fig. 7a.
The second experiment has been achieved in a simulated
65 m2 apartment with 6 individuals, which are grouped as
is illustrated in the Fig. 7e. The graph Pt generated by
the combined PRM-RRT path planner for both two environ-
ments are shown in the Figures 7b and 7f, respectively.
These graphs define the navigation plan for the robot within
the environment, before detecting group of humans in its
surrounding.

The contour maps of the personal space of the groups
of persons in the environments are shown in the Figs. 7c
and 7g. The discomfort experienced by the individuals is
modelled using different curve lines of each Gaussian. In
the Figs. 7d and 7h are drawn the clusters of persons after
using the algorithm proposed in this paper. These clusters
describe the forbidden areas for the robot navigation and are
related with the h parameter (h = 1.0 in all the tests).

Finally, for illustrative purposes, an example of the pos-
sible results given by the proposed methodology and by the
navigation system without social awareness [19] is presented
in Figs. 8a and 8b. A list of targets has been defined and
marked in the figure and, over the same figures, the robot
trajectory is drawn. In Fig. 7, red and blue lines are the final
paths followed by the robot during its social navigation or
without it, respectively. Green lines show the polylines that
define the contour of forbidden navigation. These tests were
achieved 10 times per simulated environment using always
the same targets and positioning of objects and people.

The mean values of the time used by the robot during its
navigation in the environment described in Fig. 7a so as its
traveled distance are shown on Table I. The mean values of
the minimum distances to each individuals, dmin, are also
shown in I. Besides, Table II summarizes these same values
for the experiment described in Fig. 7e1. From the results
of the experiments, it is possible to conclude that the robot
successfully navigate in a socially acceptable way avoiding
the group of individuals. In particular, dmin values using
the navigation architecture proposed in this work are higher
than the navigation method without social skills. These dmin

values allows the robot move around the humans without
disturbing them. The total time in reach the targets is higher,
but it is normal due to the greater distance traveled.

V. CONCLUSION AND FUTURE WORK

Despite the increasing use of mobile robots in many
different areas and applications, the integration of these
into a more social context still has a major potential for
growth. However, this requires the research and development
of techniques that will allow these robots to act in a way that
is socially acceptable.

In this article, a social navigation approach considering
environments with groups of people is presented. This paper

1A video of the experiments is accessible on
https://youtu.be/qV4QQwl5HOU.

TABLE I: Navigation results for the square environment

Social navigation architecture Haut et al. [19]

Parameter Value Parameter Value

Travelled distance 21.99m Travelled distance 20.12m
Total time 175s Total time 140s

dmin Person 1 115cm dmin Person 1 45cm
dmin Person 2 160cm dmin Person 2 52cm

dmin Person 3 80cm dmin Person 3 43cm
dmin Person 4 82cm dmin Person 4 75cm
dmin Person 5 220cm dmin Person 5 71cm

dmin Person 6 109cm dmin Person 6 58cm

TABLE II: Navigation results for the apartment

Social navigation architecture Haut et al. [19]

Parameter Value Parameter Value

Travelled distance 22.3m Travelled distance 19.94m
Total time 230s Total time 120s

dmin Person 1 138cm dmin Person 1 50cm
dmin Person 2 94cm dmin Person 2 43cm

dmin Person 3 170cm dmin Person 3 62cm
dmin Person 4 115cm dmin Person 4 16cm
dmin Person 5 101cm dmin Person 5 47cm

dmin Person 6 81cm dmin Person 6 48cm

proposes the use of a global density function to efficiently
cluster individuals into groups, therefore facilitating the
robot’s navigation. Finally, a social navigation architecture
is presented to execute the navigation considering this social
representation. The experiments demonstrate the effective-
ness of the approach, so as the improvement of the robot’s
social behaviour during its motion in human-populated en-
vironment.

Future research directions include the extension of the
methodology to deal with dynamic environments (i.e. people
moving around) and the interaction between humans and ob-
jects in the scene. We also intend to apply the methodology in
a real-world scenario, and to study, under realistic conditions,
the actual reaction of human subjects regarding to safety and
discomfort.
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